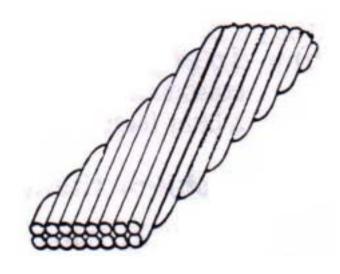
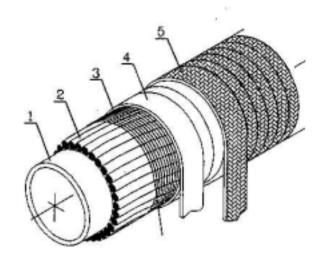
Fast Cycling SC Magnets

Participants
Arup Ghosh -Conductor
Gebhard Moritz- Magnet System
Al McInturff- Quench protection


Workshop Plans

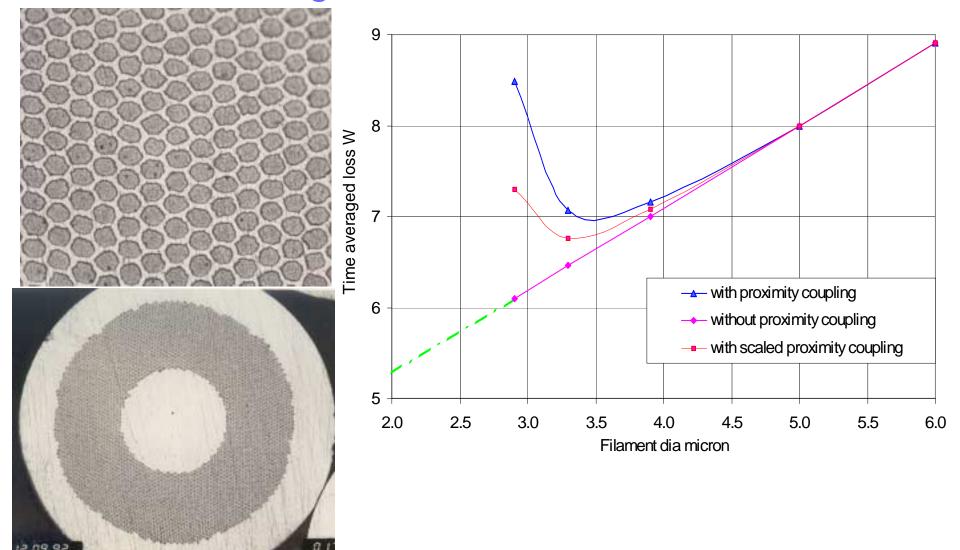
- Issues for SC magnets operating at 1Hz
 - Optimal conductor choice
 - Warm or cold iron
 - Maximum field range ? (SIS 300 ⇒ 6T)
 - Quench Protection
 - Effect of Cyclical Stress in the Coil
 - Mechanical Stability of the Nuclotron Coil package including ends
 - Field Harmonic measurements
 - Not addressed at this workshop. BNL is working on a measurement system described in MT-18
- Present Status


Starting Point for Magnets

- SIS100 ring cycling to 2T at 4T/s
 - Nuclotron Magnet
 - Iron Dominated
- SIS200 ring cycling to 4T at 1T/s
 - GSI-001 RHIC style Magnet
 - Coil Dominated
- SIS300 ring ramped up at 1T/s to 6T
 - UNK magnet at 5T
 - SSC magnet at 6.6T
 - Single bore LHC magnet

Conductor/ Cable Design

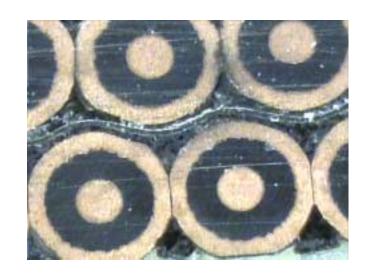
Rutherford

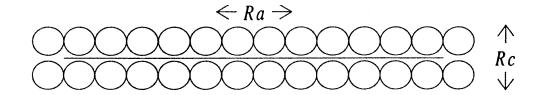

Nuclotron

- 1-Cooling tube
- 2- Sc. strands
- 3- Nichrome wire
- 4- Kapton tape
- 5 Glassfiber tape

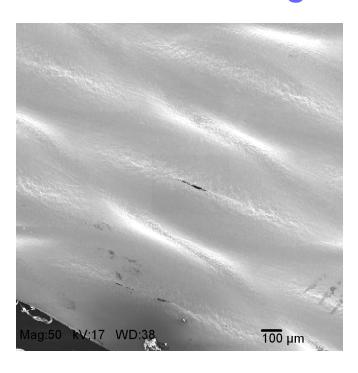
For Cos θ Magnet :Strand Design

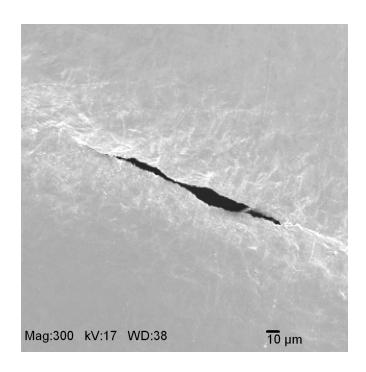
- Minimize SC magnetization
 - Small filament diameter 2.5 μm
 - suppress "proximity-coupling by using Cu-2.5%Mn matrix.
- Reduce eddy-current magnetization
 - High-resistive matrix, Cu-2.5%Mn
 - Small twist pitch, practical limit 5xD
 - $Jc > 2500 A/mm^2 at 5T$


Scaling of loss with filament diameter



Arup Ghosh


dB/dt Magnetization in a Rutherford Cable


- 2 layers of 25 μm SS tape works well to eliminate Rc eddy-current effects. Cabling experience limited. Single layer core material options is under study.
- Keep R_A low for adequate Current Sharing. Ag-Sn coated strands works well

Perforations in the SS-ribbon at the cable minor edge

Cable made with 50 µm brass ribbon as a core does not show any pin-holes..

Loss contributions at 1T/s for GSI-001 Prototype Magnet

transverse crossover loss (R_C) = 0.33%

transverse adjacent loss $(R_A) = 7.3\%$

parallel loss (Rc) = 0.14%

filament coupling loss (Cu-matrx) = 29.6%

hysteresis loss $(d_{fil} 6 \mu m) = 62.6\%$

These are based on measured strand and cable properties

From measurements of the 4T BNL magnet:Conclusions by M. Wilson

- → Theory works pretty well!
- →Good enough to design magnet cooling and refrigeration
- → Rate dependent losses show anomalous increase at high fields
 - \rightarrow change in R_A with increasing pressure?
- → Hysteresis losses show anomalous increase at high fields
 - →iron?
 - → transport current?
 - → movement + friction?

Quench protection issues

- SIS 100 design can use the sextant dump but with the protection resistor to 0.08 ohms and cold diodes, or
- if the machine is divided into thirds then the protection resistor at 0.16 ohms will drive the magnet to 300K or cold diodes have to be used.

Quench Protection SIS 200

- 4T magnet at 1T/s
- using"100" Design 1/3rd ring dump scheme
- A 120 magnet circuit ~2 mH/magnet
- 40 magnets/string $R_p = 0.16$ ohms
- I(oper) = 6 kA V(max) = 960 volts
- --> 80mH/0.16 ~0.5 sec.
- ---> RHIC Miits curve T(max) ~300K
- ---> peak voltage to Grd <1.4kV

Quench Protection Issues

- If we use cold diodes
- Ramp rate 1 T/sec or 1.5kA/sec --> 4T
- diode turn-on V $2x10^{-3} x 1.5x10^3 = 3volts$
- at 1.3V (LHC type diode) need a stack of three diodes/magnet

Quench protection SIS 300

- 6T magnet
- For operating currents less than 7 kA, combination of diodes <u>and</u> extraction/or bypass (SCR)
- For options over 7kA operating current, the number of diodes doubles but the number of circuits needed (assuming V_{limit} of 1.5 kV to ground) is similar, major sections separated by SCR's opening main circuits at each magnet protection string.

Summary

- SC magnets cycling at 1-4T/s are quite feasible.
- Develop strand with smaller filament size 2.5-3.5 μm goal. Nb₃Sn as an option ?
- Development of single tape"cored" cable
- Examine the mechanical constraint of the coil and the ends for the Nuclotron magnet
 - quench protection choice
- For SIS 300 examine the different available designs for cost, reliability, quench protection

Write-up

- Conductor and cable development
 - Arup Ghosh
- Magnet system for SIS 100 and SIS 300
 - Gebhard Moritz
- Quench protection of SIS 100 and SIS 300
 - Al McInturff